5D robot-assisted ultrasound developed at JHU
"An Indian researcher at the Johns Hopkins University has developed the world’s first five-dimensional ultrasound system that will help surgeons detect and treat cancerous tumors.
Nishikant Deshmukh, 33, who just earned a doctoral degree from the prestigious university in Computer Science, developed the breakthrough system as part of his PhD
thesis.
The
ultrasound technology currently used by most surgeons is predominantly
two-dimensional. Some hospitals also use a more advanced 3D computer
graphics. However, the 3D model is not real-time, and it takes longer to
generate images, making it difficult for surgeons to use information
from it while conducting complex surgeries that require real-time
decision-making.
In a
nutshell, Dr. Deshmukh’s technology combines 3D ultrasound B-mode and
the 3D ultrasound elastography volumetric data and make them available
in real-time.
Elastography
is a medical imaging method that measures elastic properties of soft
tissue and maps them as an image for diagnosing stiff regions such as
cancer tumor. B-mode images are the ones we usually come across during a
doctor’s sonography scan. Sonography, or diagnostic ultrasound, is a
medical imaging technology where sound waves are used to produce images.
The technology Dr. Deshmukh developed is termed as 5D ultrasound due
to its ability to visualize and get the current combined data in
real-time. The advanced imaging model that he developed can generate
elastography using Graphic Processing Units at 60-70 frames per second,
which enables combining elastography with real-time machine-generated
B-mode images
Dr. Deshmukh
presented the findings of his research for the first time at the 2015
Information Processing in Computer Assisted Interventions (IPCAI), a
premier forum in the field. He has also published the research, along
with his advisors and colleagues at the Laboratory of Computational
Science and Robotics at the Johns Hopkins University and the National
Institutes of Health, in two journals, the International Journal of Computer Assisted Radiology and Surgery and PLOS ONE.
Dr.
Deshmukh, who has an undergraduate degree in Computer Engineering from
the University of Pune, said his technology could be used for early
stage cancer detection in areas such as prostate and breast. “It will
help a radiologist to determine whether the abnormally grown tissue is a
potentially fatal tumor, or a more benign cyst.”
The
researcher said the technology would be especially useful in rural
areas in the developing world where the more expensive Magnetic
Resonance Imaging (MRI) is not available.
Dr. Deshmukh has also
integrated the elastography system with the minimally invasive da Vinci
robotic system, which has been used clinically since the year 2000.
“What
we did was to accelerate it on GPUs to make it fast enough to be able
to use it during surgery,” he said. “We also integrated it with the da
Vinci system where the robot generates steady palpation motion for us.”
Dr.
Deshmukh came to the Johns Hopkins University in 2008 to pursue his
higher studies. Earlier, he worked at the National Stock Exchange of
India in Mumbai for three years. His knowledge in parallel and
distributed computing at NSE helped him to do advanced research in
cancer imaging at The Johns Hopkins University, he said. The field is
identified as Computer Integrated Surgery, which is a cross-disciplinary
field of Computer Science, Medical Imaging, Biomedical Engineering,
Robotics and Mechanical Engineering."
Source: American Bazar
Comments