Article intro - From concept to in vivo trials with endovascular robots
A recent article on IEEE Spectrum: "Mini Robot Enters Blood Vessels, Completes Surgery - Researchers demonstrate proof of concept in a pig’s artery" was covering a RAL publication form Ja et al. "Separable and Recombinable Magnetic Robot for Robotic Endovascular Intervention":
"Ganhee Jang’s team came up with a solution using an untethered robot that’s guided externally by magnets. That’s where the I-RAMAN (robotically assisted magnetic navigation system for endovascular intervention) robot gets its name.
First, the Hanyang team developed software that uses 2D X-ray images shot from different angles to create a 3D map of the patient’s blood vessels surrounding the blocked area. The tethered magnetic robot can use the 3D map to navigate autonomously and perform treatments such as tunneling through the lesion.
A catheter is used to inject the robot into a blood vessel near the treatment area, and the external magnetic field is used to create rotational motion to untether the robot from the catheter. The external magnetic field is then used to guide the robot to the treatment spot, relying on the 3D map to navigate.
Once the robot arrives at the part of the artery or blood vessel that needs treatment, it can perform a number of tasks, including ballooning, suctioning blood clots, and localized delivery of contrast dye or drugs. Once the robot’s task is complete, the external magnetic system guides the robot back to the catheter, and the robot is removed from the body.
In their study, the researchers first tested the technique in an artificial blood vessel floating in a water tank, which proved successful. Next, they put their robot to the test in the superficial femoral arteries of small pigs under anesthesia."
Source: IEEE Spectrum
Comments