JHU Robotics Industry Day 2018

"The Laboratory for Computational Sensing and Robotics (LCSR) will highlight its elite robotics students and showcase cutting-edge research projects in areas that include Medical Robotics, Extreme Environments Robotics, Human-Machine Systems for Manufacturing, BioRobotics and more. JHU Robotics Industry Day will take place from 8 a.m. to 3 p.m. in Hackerman Hall on the Homewood Campus at Johns Hopkins University.
Robotics Industry Day will provide top companies and organizations in the private and public sectors with access to the LCSR’s forward-thinking, solution-driven students. The event will also serve as an informal opportunity to explore university-industry partnerships.
You will experience dynamic presentations and discussions, observe live demonstrations, and participate in speed networking sessions that afford you the opportunity to meet Johns Hopkins most talented robotics students before they graduate."

Their amazing research portfolio is introduced in the 2017 Industry Day booklet. Excerpts: 

LCSR laboratories:

The Biomechanical- and Image-Guided Surgical Systems (BIGSS) laboratory is a collaboration between researchers at the Johns Hopkins University and the Johns Hopkins University Applied Physics Laboratory. This laboratory focuses on developing innovative computer-aided surgical guidance systems involving novel robots, advanced imaging, and real-time biomechanical assessments to improve surgical outcomes. 

The PULSE Lab, directed by Dr. Muyinatu A. Lediju Bell, integrates light, sound, and robots to develop innovative biomedical imaging systems that simultaneously address unmet clinical needs and improve patient care. Our emphasis is diagnostic and surgical ultrasound and photoacoustic technologies, with applications in neurosurgery, cancer detection and treatment, and women’s health. We maintain a constant eye toward interfacing our technologies with real patients to facilitate clinical translation. The PULSE Lab is affiliated with the Laboratory for Computational Sensing and Robotics, the Malone Center for Engineering in Healthcare, and the Carnegie Center for Surgical Innovation, with dedicated laboratory space at both the Johns Hopkins University Homewood Campus and the Johns Hopkins Hospital School of Medicine. 

The MUSiiC research lab, headed by Dr. Emad Boctor, develops innovative ultrasound technologies for medical applications ranging from prostate and breast cancer treatment to liver ablation and brachytherapy, among others. The group is based on a collaboration among researchers from Johns Hopkins Medical School, Johns Hopkins Whiting School of Engineering, and partners from other academic institutions and industry. 

The Haptics and Medical Robotics (HAMR) Laboratory seeks to extend the current knowledge surrounding the human perception of touch, especially as it relates to applications of human/robot interaction and collaboration. We are particularly interested in medical robotics applications such as minimally invasive surgical robots, upper-limb prosthetic devices, and rehabilitation robots. To solve many of the problems in these areas, we apply techniques from human perception, human motor control, neuromechanics, and control theory. 

Dr. Gregory Chirikjian directs the Robot and Protein Kinematics Lab in LCSR. This lab is involved in research in computational structural biology (in particular, computational mechanics of large proteins), conformational statistics of biological macromolecules, developed theory for ‘hyper- redundant’ (snakelike) robot motion planning, hyper-redundant robotic manipulator arms, modular self-reconfigurable robots, applied mathematics (applications of group theory in engineering), self-replicating robotic systems. 

The LIMBS laboratory, directed by Noah J. Cowan, strives to uncover principles of animal and robot sensory guidance. For animals this is an analysis problem: we reverse engineer the biomechanical and neural control principles underlying animal movement. For robotics, this is a design problem: we incorporate biological inspiration and engineering insights to synthesize new approaches to robot control. This research program includes several projects. 

The Computational Interaction and Robotics Laboratory, directed by Dr. Gregory Hager, is devoted to the study of problems that involve dynamic, spatial interaction at the intersection of imaging, robotics, and human-computer interaction. The laboratory has a number of ongoing projects in this area. The Language of Motion project is seeking to develop new methods to recognize and evaluate skilled human manipulation, with a particular emphasis on surgery. Data is collected using a da Vinci Surgical robot, and processed into gesture-based models that support skill evaluation, training, and human-robot collaborative task execution. The Manipulating and Perceiving Simultaneously (MAPS) project seeks to apply principles of computer vision to tactile sensing, with the goal of developing new methods for haptic object recognition. The lab’s most recent work aims to develop Generic Perception to support general-purposes manipulation of objects in the physical world. The laboratory also works in the area of medical imaging. Interactive computer-aided diagnostic systems based on images are also an area of interest. 

The Advanced Medical Instrumentation and Robotics Research Laboratory (AMIRo), directed by Dr. Iulian Iordachita, conducts research to aid and support the robotic assisted medical technology encompassing medical diagnosis and therapy, and clinical research. The main goal is to create the future medical robots and devices that will help clinicians to deliver earlier diagnosis and less invasive treatments at lower cost and in shorter time. 

Dr. Peter Kazanzides heads the SMARTS lab, which works on components and integrated systems for computer-assisted surgery. This includes the integration of real-time imaging, such as video and ultrasound, to enable robotic assistance in more challenging environments, such as minimally invasive surgery and microsurgery. Research in component technologies includes high-performance motor control, electromagnetic and inertial sensing, and sensor fusion. The lab also performs research in system architectures, applying component-based software engineering concepts to provide a uniform programming model for multi-threaded, multiprocess, and multi-processor systems. 

The Autonomous Systems, Control and Optimization Laboratory (ASCO), directed by Dr. Marin Kobilarov, aims to develop intelligent robotic vehicles that can perceive, navigate, and accomplish challenging tasks in uncertain, dynamic, and highly constrained environments. The lab performs research in analytical and computational methods for mechanics, control, motion planning, and reasoning under uncertainty, and in the design and integration of novel mechanisms and embedded systems. Application areas include mobile robots, aerial vehicles, and nano satellites.

Aero- and hydrodynamics have helped us understand how animals fly and swim and develop aerial and aquatic vehicles that work well. By contrast, we know little about how animals move so well through almost any terrain, and even the best robots struggle in terrain like building rubble or loose Martian soil. Analogous to aero- and hydrodynamics, we are creating terradynamics, new physics models of locomotor-terrain interactions, to understand animal locomotion and improve robotic mobility in complex terrain common in the real world. 

The CAMP laboratory aims at developing the next generation solutions for computer assisted interventions. The complexity of surgical environments requires us to study, model and monitor surgical workflow enabling the development of novel patient and process specific imaging and visualization methods. Due to the requirements of flexibility and reliability we work on novel robotized multi-modal imaging solutions and to satisfy the challenging usability requirements we focus on data fusion and its interactive representation within augmented reality environments. The lab creates a bridge across the Atlantic ocean by hosting researchers working at both of Prof. Navab’s groups at JHU in Baltimore and TUM in Germany. 

Professor Russell Taylor directs the Computer Integrated Interventional Systems (CIIS) laboratory. This lab exists to develop surgical systems that integrate novel computer and human/machine interface technologies that will revolutionize surgical procedures, extending the surgeon’s abilities to achieve better outcomes at lower costs. Some of the recent research projects include robot assisted microsurgery (steady hand eye robot), surgical control and planning, snake robot, deformable human anatomical models, smart surgical instruments, treatment plan optimization in radiation oncology, image overlay, laparoscopic-assisted robot system, robot assisted ultrasound and MRI compatible robotics. 

Professor Louis Whitcomb directs the DSCL lab and research focusing on problems in the navigation, dynamics, and control of linear and nonlinear dynamical systems, observers, nonlinear systems analysis, modeling, and sensing relevant to robots that interact dynamically in extreme environments. The principal focus is on problems motivated by two application areas that share a common underlying mathematical framework – underwater robot vehicles and robot manipulators.

Read more/apply here.

Comments

Popular Posts